Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo.

Identifieur interne : 001173 ( Main/Exploration ); précédent : 001172; suivant : 001174

Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo.

Auteurs : Ekaterina Yurchenko [Canada] ; Marina T. Shio ; Tony C. Huang ; Maria Da Silva Martins ; Moshe Szyf ; Megan K. Levings ; Martin Olivier ; Ciriaco A. Piccirillo

Source :

RBID : pubmed:22545118

Descripteurs français

English descriptors

Abstract

While natural CD4(+)Foxp3(+) regulatory T (nT(REG)) cells have long been viewed as a stable and distinct lineage that is committed to suppressive functions in vivo, recent evidence supporting this notion remains highly controversial. We sought to determine whether Foxp3 expression and the nT(REG) cell phenotype are stable in vivo and modulated by the inflammatory microenvironment. Here, we show that Foxp3(+) nT(REG) cells from thymic or peripheral lymphoid organs reveal extensive functional plasticity in vivo. We show that nT(REG) cells readily lose Foxp3 expression, destabilizing their phenotype, in turn, enabling them to reprogram into Th1 and Th17 effector cells. nT(REG) cell reprogramming is a characteristic of the entire Foxp3(+) nT(REG) population and the stable Foxp3(NEG) T(REG) cell phenotype is associated with a methylated foxp3 promoter. The extent of nT(REG) cell reprogramming is modulated by the presence of effector T cell-mediated signals, and occurs independently of variation in IL-2 production in vivo. Moreover, the gut microenvironment or parasitic infection favours the reprogramming of Foxp3(+) T(REG) cells into effector T cells and promotes host immunity. IL-17 is predominantly produced by reprogrammed Foxp3(+) nT(REG) cells, and precedes Foxp3 down-regulation, a process accentuated in mesenteric sites. Lastly, mTOR inhibition with the immunosuppressive drug, rapamycin, stabilizes Foxp3 expression in T(REG) cells and strongly inhibits IL-17 but not RORγt expression in reprogrammed Foxp3(-) T(REG) cells. Overall, inflammatory signals modulate mTOR signalling and influence the stability of the Foxp3(+) nT(REG) cell phenotype.

DOI: 10.1371/journal.pone.0035572
PubMed: 22545118
PubMed Central: PMC3335853


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo.</title>
<author>
<name sortKey="Yurchenko, Ekaterina" sort="Yurchenko, Ekaterina" uniqKey="Yurchenko E" first="Ekaterina" last="Yurchenko">Ekaterina Yurchenko</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Microbiology and Immunology, McGill University, Montreal, Quebec</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shio, Marina T" sort="Shio, Marina T" uniqKey="Shio M" first="Marina T" last="Shio">Marina T. Shio</name>
</author>
<author>
<name sortKey="Huang, Tony C" sort="Huang, Tony C" uniqKey="Huang T" first="Tony C" last="Huang">Tony C. Huang</name>
</author>
<author>
<name sortKey="Da Silva Martins, Maria" sort="Da Silva Martins, Maria" uniqKey="Da Silva Martins M" first="Maria" last="Da Silva Martins">Maria Da Silva Martins</name>
</author>
<author>
<name sortKey="Szyf, Moshe" sort="Szyf, Moshe" uniqKey="Szyf M" first="Moshe" last="Szyf">Moshe Szyf</name>
</author>
<author>
<name sortKey="Levings, Megan K" sort="Levings, Megan K" uniqKey="Levings M" first="Megan K" last="Levings">Megan K. Levings</name>
</author>
<author>
<name sortKey="Olivier, Martin" sort="Olivier, Martin" uniqKey="Olivier M" first="Martin" last="Olivier">Martin Olivier</name>
</author>
<author>
<name sortKey="Piccirillo, Ciriaco A" sort="Piccirillo, Ciriaco A" uniqKey="Piccirillo C" first="Ciriaco A" last="Piccirillo">Ciriaco A. Piccirillo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22545118</idno>
<idno type="pmid">22545118</idno>
<idno type="doi">10.1371/journal.pone.0035572</idno>
<idno type="pmc">PMC3335853</idno>
<idno type="wicri:Area/Main/Corpus">001153</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001153</idno>
<idno type="wicri:Area/Main/Curation">001153</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001153</idno>
<idno type="wicri:Area/Main/Exploration">001153</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo.</title>
<author>
<name sortKey="Yurchenko, Ekaterina" sort="Yurchenko, Ekaterina" uniqKey="Yurchenko E" first="Ekaterina" last="Yurchenko">Ekaterina Yurchenko</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Microbiology and Immunology, McGill University, Montreal, Quebec</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shio, Marina T" sort="Shio, Marina T" uniqKey="Shio M" first="Marina T" last="Shio">Marina T. Shio</name>
</author>
<author>
<name sortKey="Huang, Tony C" sort="Huang, Tony C" uniqKey="Huang T" first="Tony C" last="Huang">Tony C. Huang</name>
</author>
<author>
<name sortKey="Da Silva Martins, Maria" sort="Da Silva Martins, Maria" uniqKey="Da Silva Martins M" first="Maria" last="Da Silva Martins">Maria Da Silva Martins</name>
</author>
<author>
<name sortKey="Szyf, Moshe" sort="Szyf, Moshe" uniqKey="Szyf M" first="Moshe" last="Szyf">Moshe Szyf</name>
</author>
<author>
<name sortKey="Levings, Megan K" sort="Levings, Megan K" uniqKey="Levings M" first="Megan K" last="Levings">Megan K. Levings</name>
</author>
<author>
<name sortKey="Olivier, Martin" sort="Olivier, Martin" uniqKey="Olivier M" first="Martin" last="Olivier">Martin Olivier</name>
</author>
<author>
<name sortKey="Piccirillo, Ciriaco A" sort="Piccirillo, Ciriaco A" uniqKey="Piccirillo C" first="Ciriaco A" last="Piccirillo">Ciriaco A. Piccirillo</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>CD4 Antigens (immunology)</term>
<term>Down-Regulation (MeSH)</term>
<term>Forkhead Transcription Factors (genetics)</term>
<term>Forkhead Transcription Factors (immunology)</term>
<term>Gene Expression (drug effects)</term>
<term>Immunosuppressive Agents (pharmacology)</term>
<term>Inflammation (genetics)</term>
<term>Inflammation (immunology)</term>
<term>Interleukin-17 (immunology)</term>
<term>Interleukin-2 (immunology)</term>
<term>Intestinal Mucosa (metabolism)</term>
<term>Intestines (immunology)</term>
<term>Intestines (parasitology)</term>
<term>Lymphopenia (genetics)</term>
<term>Lymphopenia (immunology)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Nuclear Receptor Subfamily 1, Group F, Member 3 (genetics)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>T-Lymphocytes, Regulatory (drug effects)</term>
<term>T-Lymphocytes, Regulatory (immunology)</term>
<term>T-Lymphocytes, Regulatory (metabolism)</term>
<term>TOR Serine-Threonine Kinases (antagonists & inhibitors)</term>
<term>TOR Serine-Threonine Kinases (immunology)</term>
<term>Th1 Cells (immunology)</term>
<term>Th1 Cells (pathology)</term>
<term>Th17 Cells (immunology)</term>
<term>Th17 Cells (pathology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Antigènes CD4 (immunologie)</term>
<term>Cellules Th17 (anatomopathologie)</term>
<term>Cellules Th17 (immunologie)</term>
<term>Expression des gènes (effets des médicaments et des substances chimiques)</term>
<term>Facteurs de transcription Forkhead (génétique)</term>
<term>Facteurs de transcription Forkhead (immunologie)</term>
<term>Immunosuppresseurs (pharmacologie)</term>
<term>Inflammation (génétique)</term>
<term>Inflammation (immunologie)</term>
<term>Interleukine-17 (immunologie)</term>
<term>Interleukine-2 (immunologie)</term>
<term>Intestins (immunologie)</term>
<term>Intestins (parasitologie)</term>
<term>Lymphocytes T régulateurs (effets des médicaments et des substances chimiques)</term>
<term>Lymphocytes T régulateurs (immunologie)</term>
<term>Lymphocytes T régulateurs (métabolisme)</term>
<term>Lymphocytes auxiliaires Th1 (anatomopathologie)</term>
<term>Lymphocytes auxiliaires Th1 (immunologie)</term>
<term>Lymphopénie (génétique)</term>
<term>Lymphopénie (immunologie)</term>
<term>Membre-3 du groupe F de la sous-famille-1 de récepteurs nucléaires (génétique)</term>
<term>Muqueuse intestinale (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation négative (MeSH)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Sérine-thréonine kinases TOR (antagonistes et inhibiteurs)</term>
<term>Sérine-thréonine kinases TOR (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Forkhead Transcription Factors</term>
<term>Nuclear Receptor Subfamily 1, Group F, Member 3</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>CD4 Antigens</term>
<term>Forkhead Transcription Factors</term>
<term>Interleukin-17</term>
<term>Interleukin-2</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Cellules Th17</term>
<term>Lymphocytes auxiliaires Th1</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression</term>
<term>T-Lymphocytes, Regulatory</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Expression des gènes</term>
<term>Lymphocytes T régulateurs</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Inflammation</term>
<term>Lymphopenia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription Forkhead</term>
<term>Inflammation</term>
<term>Lymphopénie</term>
<term>Membre-3 du groupe F de la sous-famille-1 de récepteurs nucléaires</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Antigènes CD4</term>
<term>Cellules Th17</term>
<term>Facteurs de transcription Forkhead</term>
<term>Inflammation</term>
<term>Interleukine-17</term>
<term>Interleukine-2</term>
<term>Intestins</term>
<term>Lymphocytes T régulateurs</term>
<term>Lymphocytes auxiliaires Th1</term>
<term>Lymphopénie</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Inflammation</term>
<term>Intestines</term>
<term>Lymphopenia</term>
<term>T-Lymphocytes, Regulatory</term>
<term>Th1 Cells</term>
<term>Th17 Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Intestinal Mucosa</term>
<term>T-Lymphocytes, Regulatory</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Lymphocytes T régulateurs</term>
<term>Muqueuse intestinale</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Intestins</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Intestines</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Th1 Cells</term>
<term>Th17 Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Immunosuppresseurs</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Immunosuppressive Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Down-Regulation</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation négative</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">While natural CD4(+)Foxp3(+) regulatory T (nT(REG)) cells have long been viewed as a stable and distinct lineage that is committed to suppressive functions in vivo, recent evidence supporting this notion remains highly controversial. We sought to determine whether Foxp3 expression and the nT(REG) cell phenotype are stable in vivo and modulated by the inflammatory microenvironment. Here, we show that Foxp3(+) nT(REG) cells from thymic or peripheral lymphoid organs reveal extensive functional plasticity in vivo. We show that nT(REG) cells readily lose Foxp3 expression, destabilizing their phenotype, in turn, enabling them to reprogram into Th1 and Th17 effector cells. nT(REG) cell reprogramming is a characteristic of the entire Foxp3(+) nT(REG) population and the stable Foxp3(NEG) T(REG) cell phenotype is associated with a methylated foxp3 promoter. The extent of nT(REG) cell reprogramming is modulated by the presence of effector T cell-mediated signals, and occurs independently of variation in IL-2 production in vivo. Moreover, the gut microenvironment or parasitic infection favours the reprogramming of Foxp3(+) T(REG) cells into effector T cells and promotes host immunity. IL-17 is predominantly produced by reprogrammed Foxp3(+) nT(REG) cells, and precedes Foxp3 down-regulation, a process accentuated in mesenteric sites. Lastly, mTOR inhibition with the immunosuppressive drug, rapamycin, stabilizes Foxp3 expression in T(REG) cells and strongly inhibits IL-17 but not RORγt expression in reprogrammed Foxp3(-) T(REG) cells. Overall, inflammatory signals modulate mTOR signalling and influence the stability of the Foxp3(+) nT(REG) cell phenotype.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22545118</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo.</ArticleTitle>
<Pagination>
<MedlinePgn>e35572</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0035572</ELocationID>
<Abstract>
<AbstractText>While natural CD4(+)Foxp3(+) regulatory T (nT(REG)) cells have long been viewed as a stable and distinct lineage that is committed to suppressive functions in vivo, recent evidence supporting this notion remains highly controversial. We sought to determine whether Foxp3 expression and the nT(REG) cell phenotype are stable in vivo and modulated by the inflammatory microenvironment. Here, we show that Foxp3(+) nT(REG) cells from thymic or peripheral lymphoid organs reveal extensive functional plasticity in vivo. We show that nT(REG) cells readily lose Foxp3 expression, destabilizing their phenotype, in turn, enabling them to reprogram into Th1 and Th17 effector cells. nT(REG) cell reprogramming is a characteristic of the entire Foxp3(+) nT(REG) population and the stable Foxp3(NEG) T(REG) cell phenotype is associated with a methylated foxp3 promoter. The extent of nT(REG) cell reprogramming is modulated by the presence of effector T cell-mediated signals, and occurs independently of variation in IL-2 production in vivo. Moreover, the gut microenvironment or parasitic infection favours the reprogramming of Foxp3(+) T(REG) cells into effector T cells and promotes host immunity. IL-17 is predominantly produced by reprogrammed Foxp3(+) nT(REG) cells, and precedes Foxp3 down-regulation, a process accentuated in mesenteric sites. Lastly, mTOR inhibition with the immunosuppressive drug, rapamycin, stabilizes Foxp3 expression in T(REG) cells and strongly inhibits IL-17 but not RORγt expression in reprogrammed Foxp3(-) T(REG) cells. Overall, inflammatory signals modulate mTOR signalling and influence the stability of the Foxp3(+) nT(REG) cell phenotype.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yurchenko</LastName>
<ForeName>Ekaterina</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shio</LastName>
<ForeName>Marina T</ForeName>
<Initials>MT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Tony C</ForeName>
<Initials>TC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Da Silva Martins</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Szyf</LastName>
<ForeName>Moshe</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Levings</LastName>
<ForeName>Megan K</ForeName>
<Initials>MK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Olivier</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Piccirillo</LastName>
<ForeName>Ciriaco A</ForeName>
<Initials>CA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MOP 67211</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
<Grant>
<GrantID>MOP 84037</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>04</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015704">CD4 Antigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051858">Forkhead Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C498833">Foxp3 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007166">Immunosuppressive Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020381">Interleukin-17</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007376">Interleukin-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D057132">Nuclear Receptor Subfamily 1, Group F, Member 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546843">mTOR protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015704" MajorTopicYN="N">CD4 Antigens</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051858" MajorTopicYN="N">Forkhead Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007166" MajorTopicYN="N">Immunosuppressive Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020381" MajorTopicYN="N">Interleukin-17</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007376" MajorTopicYN="N">Interleukin-2</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007413" MajorTopicYN="N">Intestinal Mucosa</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007422" MajorTopicYN="N">Intestines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008231" MajorTopicYN="N">Lymphopenia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057132" MajorTopicYN="N">Nuclear Receptor Subfamily 1, Group F, Member 3</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050378" MajorTopicYN="N">T-Lymphocytes, Regulatory</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018417" MajorTopicYN="N">Th1 Cells</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058504" MajorTopicYN="N">Th17 Cells</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22545118</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0035572</ArticleId>
<ArticleId IdType="pii">PONE-D-11-25382</ArticleId>
<ArticleId IdType="pmc">PMC3335853</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Protoc. 2007;2(10):2307-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Jun 1;178(11):6725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2008 Jan;16(1):194-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17984976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2008 Mar 17;205(3):565-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18283119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2008;26:453-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18062768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 May 8;453(7192):236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18368049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2008 May;28(5):687-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18468463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2008 Jun;38(6):1654-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18493985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7797-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18509048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2008 Jul 18;29(1):44-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18585065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2008 Sep;29(9):429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18676178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Nov 1;181(9):6283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18941219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2008 Dec;20(6):655-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18926906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2009 Feb;9(2):83-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19174509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 13;323(5920):1488-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19286559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2009 Apr;39(4):948-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19291701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2009 Apr 30;113(18):4240-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 26;106(21):8635-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2009 Jul;10(7):689-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19536194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2009 Jun 19;30(6):832-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19538929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(6):e5994</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19543393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2009 Sep;10(9):1000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2009 Jun;55(6):705-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2009 Nov;10(11):1178-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19783988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2009 Oct 22;361(17):1710-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19846862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr;6(4):e1000871</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20442861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Sep 24;329(5999):1667-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20929851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(10):e1001148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20976196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 28;475(7357):514-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21765430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2003 Apr;4(4):330-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2003 Apr;4(4):337-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2004;22:531-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Oct 22;75(2):274-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8104709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1995 Aug 1;155(3):1151-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7636184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Jan;27(1):20-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Jan;27(1):68-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11138001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2001 Aug 1;167(3):1137-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11466326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2002 Mar;120(1):33-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11849703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Immunol. 2001 Dec 15;214(2):110-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12088410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Feb 14;299(5609):1057-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12522256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2005 Mar 7;201(5):723-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15753206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2005 Mar;22(3):329-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5126-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15795373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 May 11;441(7090):231-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 May 11;441(7090):235-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2006 Dec;36(12):3238-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17109471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Dec 15;177(12):8338-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Feb;5(2):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17298177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Feb 15;445(7129):771-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2007 Dec 15;7(13):1819-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Montréal</li>
</settlement>
<orgName>
<li>Université McGill</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Da Silva Martins, Maria" sort="Da Silva Martins, Maria" uniqKey="Da Silva Martins M" first="Maria" last="Da Silva Martins">Maria Da Silva Martins</name>
<name sortKey="Huang, Tony C" sort="Huang, Tony C" uniqKey="Huang T" first="Tony C" last="Huang">Tony C. Huang</name>
<name sortKey="Levings, Megan K" sort="Levings, Megan K" uniqKey="Levings M" first="Megan K" last="Levings">Megan K. Levings</name>
<name sortKey="Olivier, Martin" sort="Olivier, Martin" uniqKey="Olivier M" first="Martin" last="Olivier">Martin Olivier</name>
<name sortKey="Piccirillo, Ciriaco A" sort="Piccirillo, Ciriaco A" uniqKey="Piccirillo C" first="Ciriaco A" last="Piccirillo">Ciriaco A. Piccirillo</name>
<name sortKey="Shio, Marina T" sort="Shio, Marina T" uniqKey="Shio M" first="Marina T" last="Shio">Marina T. Shio</name>
<name sortKey="Szyf, Moshe" sort="Szyf, Moshe" uniqKey="Szyf M" first="Moshe" last="Szyf">Moshe Szyf</name>
</noCountry>
<country name="Canada">
<region name="Québec">
<name sortKey="Yurchenko, Ekaterina" sort="Yurchenko, Ekaterina" uniqKey="Yurchenko E" first="Ekaterina" last="Yurchenko">Ekaterina Yurchenko</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001173 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001173 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22545118
   |texte=   Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22545118" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020